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Abstract

A numerical investigation of double-diffusive mixed convection within a two-dimensional, horizontal annulus has been carried out. The outer
cylinder was made to rotate in an anti-clockwise direction to introduce the forced convection effect. In addition, the solutal and thermal buoyancy
forces are sustained by maintaining the inner cylinder at a uniform but higher concentration and temperature values, respectively. The flow
is considered to operate in the laminar regime under steady state conditions. Moreover, the transport equations are solved using the Galerkin
weighted residual method by incorporating a non-uniform mesh size. The heat and mass transfer rates were closely examined using several
dimensionless groups in a wide domain of operating conditions. The considered domains in this investigation are as follows: 5 � Re � 150,
0.01 � Le � 10, 103 � Ra � 105, −15 � N � 15, 0.7 � Pr � 10, 0.5 � σ � 5 and −0.75 � ε � 0.75. The whole flow regimes were defined
according to the relative values of Reynolds number and solutal and thermal Grashof number. Furthermore, the predictions of the average Nusselt
and Sherwood numbers were obtained for the operating range of the Lewis and buoyancy ratio numbers.
 2005 Elsevier SAS. All rights reserved.
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1. Introduction

Double-diffusive convection is generally referred to the class
of problems where the fluid flow is induced by the simultaneous
presence of two diffusive components, namely; temperature and
concentration [1]. A substantial amount of research has been
reported on double-diffusive convection in confined spaces due
to its vast engineering applications. For instance, the technolo-
gies involved in the chemical vapor deposition processes for the
semiconductor device fabrications [2]. Also, the migration of
impurities in non-isothermal material processing applications
has motivated many researchers in exploring the characteristics
of the associated species and energy transport processes. The
effect of rotation in a double-diffusive convection has been con-
sidered in natural phenomena (e.g., atmospheric and oceanic
flow) and several engineering applications. The migration of the
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species is known to be sensitive to the magnitude of rotational
speed, which is a crucial parameter in drying technologies and
crystal growth applications. Furthermore, the incorporation of
rotation effects introduces Taylor vortices due to the presence
of a centrifugal force, which is essential in order to control
the dynamics of the system at hand. Other pertinent technolo-
gies include melting and solidification processes in a steadily
rotating furnace are likely candidates for such applications. In
addition, the flow and heat transfer characteristics under the si-
multaneous effect of temperature and concentration gradients
are determined by the combined effects of inertia, flow buoy-
ancy and centrifugal forces. These effects are generally repre-
sented by the Grashof number and the ‘rotational’ Reynolds
number, respectively. It is a common practice to present the
combined effect of both numbers in terms of Richardson num-
ber; which is the ratio of Grashof number to Reynolds number.
This term indicates the importance of the buoyancy forces to
the rotational ones and its impact on the flow and heat transfer
within the considered system. Another important parameter is
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Nomenclature

C′ concentration . . . . . . . . . . . . . . . . . . . . . . . . . . kg·m−3

C dimensionless concentration, (C′ − C′
o)/(C

′
i − C′

o)

er , eφ unit vectors in the radial and angular directions, re-
spectively.

e vertical eccentricity of the inner cylinder . . . . . . m
D mass diffusivity . . . . . . . . . . . . . . . . . . . . . . . . m2·s−1

g gravitational acceleration . . . . . . . . . . . . . . . . m·s−2

GrS solutal Grashof number, gβS�C′(ro − ri)
3/ν2

GrT thermal Grashof number, gβT �T (ro − ri)
3/ν2

k thermal conductivity . . . . . . . . . . . . . . . W·m−1·K−1

Le Lewis number, Sc/Pr
N buoyancy ratio number, GrS/GrT

Nu Nusselt number
p pressure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . N·m−2

P dimensionless pressure
Pr Prandtl number, ν/α

r radial coordinate
ri , ro radii of the inner and outer cylinders, respectively
Ri,Ro dimensionless radii of the inner and outer cylinders,

respectively
Ra Rayleigh number, gβ�T (ro − ri)

3/να

Re Reynolds number, roω(ro − ri)/ν

Sc Schmidt number, ν/D

Sh Sherwood number
t time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . s
T temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . K

u dimensionless velocity vector
v velocity vector . . . . . . . . . . . . . . . . . . . . . . . . . . m·s−1

u,v dimensionless velocity components in the radial
and angular directions, respectively

Greek symbols

α thermal diffusivity . . . . . . . . . . . . . . . . . . . . . . m2·s−1

βS solutal expansion coefficient . . . . . . . . . . . m3·kg−1

βT thermal expansion coefficient . . . . . . . . . . . . . . K−1

ε dimensionless vertical eccentricity of the inner
cylinder, e/(ro − ri)

φ angular coordinate
σ ratio of the inner cylinder diameter to the gap width,

2ri/(ro − ri)

ν fluid kinematic viscosity . . . . . . . . . . . . . . . . m2·s−1

Ψ dimensionless stream function
θ dimensionless temperature, (T − To)/(Ti − To)

ρ density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . kg·m−3

ω angular velocity . . . . . . . . . . . . . . . . . . . . . . . . rad·s−1

Ω dimensionless vorticity, ω(ro − ri)/Uo

τ dimensionless time, ωrot/(ro − ri)

Subscripts

i inner cylinder
o outer cylinder
the buoyancy ratio number, which accounts for the strength of
the concentration gradient to its thermal counterpart.

The transport processes involved in double-diffusive flows
are configured based on the orientation of the externally
imposed temperature and solutal gradients. Ostrach [3] has
pointed out that various convection modes can emerge based
on the orientations of the temperature and concentration gradi-
ents. Most of the surveyed studies in the literature were con-
cerned primarily with the double-diffusive natural convection
in rectangular cavities [4–7]. Alleborn et al. [8] and Wang and
Wei [9] outlined some of the major studies in this regard. Fur-
thermore, a lesser number of investigations were reported on
the double-diffusive convection in a horizontal annulus. Ship et
al. [10] conducted a numerical study for steady laminar double-
diffusive natural convection within a vertically mounted closed
annulus with constant temperature and mass species differences
imposed across the vertical walls. Their results showed that the
buoyancy ratio was the primary parameter that defined the flow
structure. Later on, the same authors [11] studied the effect
of thermal Rayleigh number and Lewis number on double-
diffusive natural convection in a closed annulus. The results
illustrated that the thermal Rayleigh number and the Lewis
number were found to influence the buoyancy ratios at which
flow transition and flow reversal occurred. In addition, several
studies were reported on double-diffusive convection in a verti-
cal annulus. Lee et al. [12,13] have investigated, among others,

the effect of rotation in a double-diffusive convection for a sta-
bly stratified fluid within an annulus. The effect of rotation on
the development and merging of the multi-layered flow struc-
ture and various field variables were presented. Furthermore,
Sung et al. [14] reported on a rotating horizontal annulus con-
figuration, where the external temperature gradient is imposed
horizontally while the solutal gradient is applied in the verti-
cal direction. They conducted a parametric study to present the
qualitative features of flow patterns and isotherms.

The present study investigates the flow and heat transfer
characteristics of a binary fluid within a two-dimensional hori-
zontal annulus with cooled rotating outer cylinder. In addition,
the flow is assumed to operate in the laminar regime under
steady state conditions. Double-diffusive mixed convection is
maintained by taking the inner cylinder as the heated wall and
the source for the species concentration as well. The analyses
of the pertinent field variables are presented for various essen-
tial parameters such as the Reynolds number, Lewis number,
Buoyancy ratio number, Rayleigh number, Prandtl number, the
annulus gap width ratio, and the eccentricity factor. These para-
meters will be examined over a broad range to present the basic
flow patterns and isotherms in cylindrical geometries. The do-
mains of the dimensionless parameters used in the present study
were within the range of values used by many authors in the lit-
erature for mixed convection heat transfer in a two-dimensional
annulus (see, for instance, Refs. [15–17]).
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Fig. 1. Schematic of the physical model and coordinate system.

2. Mathematical model

The schematic diagram of the horizontal annulus along with
the pertinent boundary conditions is shown in Fig. 1. The inner
cylinder of radius ri and the outer cylinder of radius ro are kept
at uniform and constant temperatures (Ti andTo) and concentra-
tions (C′

i and C′
o), respectively, with Ti > To and C′

i > C′
o. The

inner cylinder is fixed, while the outer cooled cylinder is kept
on rotating in the counter-clockwise direction with a constant
angular velocity ω. In addition, the flow in the annular region
is assumed to be two-dimensional, steady and laminar. Also, all
thermophysical properties of the fluid are taken to be constant
except for the density variation in the buoyancy term, where the
Boussinesq approximation is considered to be linearly propor-
tional with both temperature and concentration such that:

ρ = ρo

[
1 − βT (T − To) − βs(C − Co)

]
(1)

where βT and βs are the coefficients for thermal and concentra-
tion expansions, respectively such that:

βT = − 1

ρo

(
∂ρ

∂T

)
P,C′

and βs = − 1

ρo

(
∂ρ

∂C′

)
P,T

(2)

Dimensionless variables and dimensionless numbers are in-
troduced as follows to cast the governing equations in dimen-
sionless forms:

Ri = ri

ro − ri
, Ro = ro

ro − ri

u = v
ωro

, θ = T − To

Ti − To

, C = C′ − C′
o

C′
i − C′

o

P = p

ρo(ωro)2
and τ = ωrot

ro − ri
(3)

The dimensionless forms of the governing equations, which de-
scribe the fluid motion, energy and species transports in the
annulus, are given by:

∇.u = 0 (4)
∂u
∂τ

+ (u.∇)u = −∇P + 1

Re
∇2u

+ GrT

Re2

[
(θ + NC) cos(φ)er − (θ + NC) sin(φ)eφ

]
(5)

∂θ

∂τ
+ (u.∇)θ = ∇2θ

Pr Re
(6)

∂C

∂τ
+ (u.∇)C = ∇2C

Sc Re
(7)

where u is the dimensionless velocity vector, P is the dimen-
sionless acting pressure, Re = ωro(ro − ri)/ν is the rotational
Reynolds number, N = βs�C′/βT �T = Grs/GrT is the buoy-
ancy ratio number, Sc = ν/D is the Schmidt number, Pr = ν/α

the Prandtl number, whereas Grs = gβs(C
′
i − C′

o)(ro − ri)
3/ν2

and GrT = gβT (Ti − To)(ro − ri)
3/ν2 are the solutal and ther-

mal Grashof numbers, respectively.
For the initial conditions, the fluid temperature and con-

centration in the entire domain has the same temperature and
concentration as the corresponding reference values at the cold
wall. In addition, the no-slip condition is imposed along the
solid impermeable walls. For the boundary conditions, the tem-
perature and concentration gradients are maintained by consid-
ering higher magnitudes at the inner cylinder. The initial and
boundary conditions are expressed mathematically as:

u = v = θ = C = 0 at τ = 0
u = v = 0, θ = C = 1 at R = Ri

u = 0, v = 1, θ = C = 0 at R = Ro (8)

Upon invoking the vorticity-stream function formulation, the
dimensionless velocity components in the governing equations
are replaced with the dimensionless vorticity Ω and the stream
function Ψ as follows:

∂Ω

∂τ
= J (Ψ,Ω) + 1

Re
∇2Ω

+ GrT

Re2

[
(θ + N) cos(φ)

∂θ

R∂φ
− (θ + N) sin(φ)

∂θ

∂R

]
(9)

∇2Ψ = −Ω (10)
∂θ

∂τ
= J (Ψ,Ω) + 1

Pr Re
∇2θ (11)

∂C

∂τ
= J (Ψ,Ω) + 1

Sc Re
∇2C (12)

where the dimensionless vorticity Ω , stream function Ψ , are
defined as

Ω = ∂(RV )

R∂R
− ∂(U)

R∂φ

U = ∂Ψ

R∂φ
and V = −∂Ψ

∂R
(13)

while the Jacobian J (f,h) and Laplacian ∇2 are

J (f,h) = 1

R

(
∂f

∂R

∂h

∂φ
− ∂f

∂φ

∂h

∂R

)
and

∇2 = ∂

R∂R

(
R

∂

∂R

)
+ ∂2

R2∂φ2
(14)

Therefore, the boundary conditions for vorticity-stream func-
tion formulation can be written in as follows:

Ω = −∂2Ψ

∂R2
,

∂Ψ

∂R
= 0 at R = Ri

Ω = −∂2Ψ

∂R2
+ 1

Ro

,
∂Ψ

∂R
= −1 at R = Ro (15)
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The local Nusselt number along the inner and outer cylinders
are calculated as the ratio of actual heat transfer to the pure
conduction heat transfer such that

Nui (φ) = −
(

R
∂θ/∂R

Nucond

)
= ln

Ri

Ro

(
R

∂θ

∂R

)
R=Ri

(16)

Nuo(φ) = −
(

R
∂θ/∂R

Nucond

)
= ln

Ri

Ro

(
R

∂θ

∂R

)
R=Ro

(17)

The average Nusselt numbers at the inner and outer cylinders
integrated over the respective circumferences to yield

Nui = 1

2π

2π∫
0

Nui (φ)dφ (18)

Nuo = 1

2π

2π∫
0

Nuo(φ)dφ (19)

It is worth noting that both Nusselt number expressions in
Eqs. (18) and (19) will yield the same result under steady-state
conditions. Similarly, the average Sherwood numbers at the in-
ner and outer cylinders can be obtained as follows

Shi = 1

2π

2π∫
0

Shi (φ)dφ (20)

Sho = 1

2π

2π∫
0

Sho(φ)dφ (21)

where

Shi (φ) = ln
Ri

Ro

(
R

∂C

∂R

)
R=Ri

and

Sho(φ) = ln
Ri

Ro

(
R

∂C

∂R

)
R=Ro

(22)

3. Numerical method

A finite element formulation based on the Galerkin method
[18,19] is employed to solve the governing equations subject to
the initial and boundary conditions for the present investigation.
The highly coupled and non-linear algebraic equations resulting
from the discretization of the governing equations are solved
using the segregated solution algorithm. The advantage of the
segregation method lies in its capability to break the global sys-
tem matrix into smaller submatrices and then solve them in a
sequential manner, which considerably reduce the storage re-
quirements. Furthermore, the conjugate residual scheme is used
to solve the symmetric pressure-type equation systems, while
the conjugate gradient squared is used for the non-symmetric
advection–diffusion type equations. A fine non-uniform grid
size with an exponential growth from both walls was employed
to capture the rapid changes in the dependent variables. More-
over, comprehensive numerical experimentations were also per-
formed to assure grid-independent results for all field variables.

A variable grid-size system of 81 × 81 was employed in the ra-
dial and circumferential directions for the present study. Further
increase in the number of grid points produced essentially the
same results. The solution was considered to have converged
to the steady state condition when the absolute value of the
maximum relative change in the field variables between two
consecutive iterations was less than 10−5.

4. Results and discussion

The discussions presented here is pertinent to the steady state
results obtained from the false transient solutions of the govern-
ing equations coupled with the set of initial and boundary con-
ditions. The grid sensitivity analysis was performed to inspect
the field variables grid-independency solutions. The results re-
ported by Yoo [20] on mixed convection of air in concentric
cylinders were used to benchmark them against the outcome
of our code. The results are presented in Fig. 2 in terms of
the streamline and isotherm patterns for a Rayleigh number
Ra = 104 with an annulus gap of σ = 2. As shown in Fig. 2, the
comparisons for Re = 100 and 200 are in excellent agreements,
which provide sufficient confidence in the numerical algorithm.

Different scenarios were explored to exemplify the effect
of a number of key dimensionless groups on the steady state
flow, temperature and concentration patterns as well as the av-
erage Nusselt and Sherwood numbers. These groups include
the rotational Reynolds number, Lewis number, buoyancy ra-
tio number, Rayleigh number, Prandtl number, the implications
of the annulus gap width, and the eccentricity factor. Most of
the cases were performed with Pr = 0.7 and σ = 2 unless it is
specified otherwise. In all the executed cases, the bounds of re-
circulation intensity were recorded for the presented streamline
results to highlight the flow activity levels.

The effect of the rotational Reynolds number, which is in-
troduced by the rotation of the outer cylinder in a counter-
clockwise fashion, is shown in Fig. 3 for Ra = 103, N = 1 and
σ = 2. In order to highlight the effect of Re alone, the Lewis
number was set to unity, i.e., Pr = Sc. The Reynolds number
was varied in the range from 5 to 150 to cover a broad range of
possible scenarios. For a low Reynolds number of Re = 5 (free
convection dominant regime), the flow is primarily induced by
the buoyancy force sustained by the application of the tempera-
ture gradient. This results in the formation of the famous pair of
‘crescent-shaped’ symmetric cells, which closely resemble the
configuration of natural convection for a low Rayleigh num-
ber in an annulus. However, the symmetry here appears to be
slightly distorted by the rotational effect. Giving that the ro-
tation is in counter clockwise direction; the forced convection
aids the flow in the left region of the annulus as compared
to opposing it in the right side region. In addition, the vis-
cous forces maintained by the rotation of the outer cylinder
elongate the cells on the left side and drag them downwards.
Subsequently, the cells on the right are pushed upwards. The
isotherms echo such observations as noted by the formation of
slightly titled thermal plumes in the direction of rotation. The
heat convection strength weakens near the outer cylinder in the
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Fig. 2. Comparisons of the streamlines and isotherms between the present work
and Yoo [20] for Ra = 104, Pr = 0.7, σ = 2 and (a) Re = 100 and (b) Re = 200.

region of π/2 < φ < 3π/2 owing to the decrease in flow activ-
ities.

Once the rotational Reynolds number is raised to 10 and
then to 25 (mixed convection regime), the above set of ob-
servations becomes more pronounced. Upon further increase
in the rotational speed, the viscous drag induced by rotation
overwhelms the convective strength. As a result, the basic flow

Fig. 3. Effect of rotational Reynolds number on the streamlines and isotherms
for Ra = 103, Le = N = 1, Pr = 0.7 and σ = 2.

patterns depreciate in value as denoted by corresponding drop

in the magnitude of the streamline levels. The increased drag

offered by the large cell in the left side region creates a zone
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Fig. 4. Effect of Lewis number on the isoconcentrations, streamlines, and isotherms for Ra = 104, Re = 100, N = 1, Pr = 0.7 and σ = 2.
of a relatively low-speed flow, which brings about the domina-
tion of the conduction regime. Moreover, the results show that
the separating streamline of Ψ = 0 has moved to the lower left
region at Re = 100 (dominant forced convection). This further
suppresses the eddy presence, which appears to fully vanish at

Re = 150. What is more, the streamlines become similar to the
classical Couette flow patterns giving their formation in circular
rings around the inner cylinder. Thus, an increase in Reynolds
number reduces the two-eddies flow pattern to a single-eddy
one. It is note worthy that the maximum recirculation has in-
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creased at Re = 150 (dominant forced convection), which is
attributed to the domination of the mechanical rotation on the
flow movement. The isotherms at high rotational speed, as a re-
sult, carry diffusion characteristics as noted by the presence of
thermal stratification in the radial direction. It is worth noting
that the mass diffusion characteristics will follow the same pat-
terns reported for the thermal characteristics as the rotational
speed is varied since Le was set to unity.

The dependence of heat and species transport on the Lewis
number is displayed in Fig. 4. The Lewis number provides a
measure of thermal diffusivity of a fluid to its mass diffusivity.
Thus, a large value of Lewis number reflects a relatively low
mass diffusivity value. The Lewis number in the ongoing inves-
tigation was varied in the range from 0.01 to 10. In addition,
the gap width σ , Re and Ra were fixed at 2, 100 and 104, re-
spectively. At Le = 0.01, the mass diffusion rate appears to be
stratified in the radial direction. In addition, a slight increase in
the mass transfer rate is depicted at Le = 0.1. The isoconcen-
tration and isotherms carry out the same contour patterns since
they have the same diffusion characteristics at Le = 1 as ex-
plained earlier. ‘Concentration’ plumes are observed to emerge
above the inner cylinder, which signal an increase in the mass
transfer rate. Also, thinner solutal boundary layers are observed
to cluster under the inner cylinder, which indicates a substan-
tial increase in the mass transfer rate. This is beneficial when
a drying process is involved. This observation is further mani-
fested as Le value was elevated to 10 (dominant mass transfer
regime). The basic flow patterns show depreciation in its inten-
sity with the increase in Le value. This is marked by the drag
of the cells on the left region downward and onto the right re-
gion. Furthermore, the results also point out that the effect of
Le on the isotherms seems to be insignificant for Le � 1 as dis-
played in Fig. 4. For Le < 1, however, the thermal plumes tend
to ease a bit with the increase in Le value. This is likely at-
tributed to the fact that the combined buoyancy effects are very
much dominated by the rotation of the outer cylinder.

The effect of Lewis number on the average values of Nusselt
and Sherwood numbers is illustrated in Fig. 5. The increase in
the prediction of Sherwood number is vivid as Le is increased
(dominant mass transfer regime). On the contrary, the Nusselt
number predictions show a slight dip and then assume an as-
ymptotic value with the increase in Le. Unlike the mass transfer
enhancement, the transport of energy is not improved with the
increase in Le value. Again, the predictions of the Nusselt and
Sherwood numbers are coincided at Le = 1 giving the similar-
ity in their diffusion characteristics.

The effect of the buoyancy ratio number, which is defined
as the ratio of mass buoyancy to the thermal buoyancy forces,
is explored next. To demonstrate the implications of the neg-
ative and positive buoyancy ratio numbers, the isopleths of Ψ

and θ are plotted in Fig. 6(a) and (b), respectively for Ra = 104,
Re = 100 and a gap width of σ = 2. Once more, the Lewis num-
ber was set at unity to explore the diffusion characteristics upon
varying N . A negative value of N indicates that the volumetric
expansion coefficient with mass fraction (βs ) holds a negative
value for the prescribed temperature range. At N = −15 (dom-
inant mass transfer regime), the separating streamline of Ψ = 0

Fig. 5. Effect of Lewis number on the average Nusselt and Sherwood numbers
for Ra = 104, Re = 100, N = 1, Pr = 0.7 and σ = 2.

in Fig. 6(a) moves to the right to encompass the large cell.
Furthermore, the cells in the right region are dragged upwards
and onto the left region, which brings about a drop in flow ac-
tivities. The bi-thermal plumes for the negative N value have
moved below the inner cylinder. Apparently, employing a neg-
ative N value causes a reversal in the basic flow patterns and
isotherms. The streamlines and isotherms are both showing re-
verse behaviors along the horizontal centerline of the annulus
as compared to the case of positive N value, which are dis-
played in Fig. 6(b). The flow strength further depreciates with
the increase in the negative N value as the cells in the right
region continue to grow in size. When the buoyancy ratio num-
ber is set to −1 (i.e., heat and mass diffusions are opposing
each other), all eddies are found to disappear causing the dom-
ination of the Couette-flow patterns as discussed earlier. The
thermal plumes have diffused as noted by the formation of con-
centric circles of isotherms. Apparently, the forced convection
has overwhelmed the diffusion behaviors in the annulus. Fur-
thermore, low streamline values are registered near the inner
cylinder, which bring about the stratification of the isotherms.
Upon further increase in N values, the two eddies are found
to form again at N = 0 in Fig. 6(b) but with the separating
streamline moving to the left instead. In this case, the solutal
diffusion rate is no longer coupled with the velocity and tem-
perature fields since βs = 0, and, hence, the problem reduces to
a pure mixed thermal convection. The increase in the cell size
to the left is attributed to the fact that the forced flow near the
outer cylinder is aiding the buoyancy-induced flow in the region
of 0 < φ < π . It is interesting also to note that the higher diffu-
sion rates have moved downward as illustrated by the isotherm
patterns. Fig. 6(b) demonstrates the results generated for pos-
itive N values. Higher flow activities and diffusion rates are
attained with the increase in N . In addition, the cells in the right
region grow in size, which is attributed to the reduction in the
magnitude of the viscous drag in the left region as higher solu-
tal Grashof number is imposed. Relatively speaking, the flow is
much weaker in the lower region near the outer cylinder owing
to the influence of the viscous drag. The effect on the isotherms
is also obvious with the increase in the thermal plumes above
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(a) (b)

Fig. 6. (a) Effect of the negative buoyancy ratio number on the streamlines and isotherms using Ra = 104, Re = 100, Le = 1, Pr = 0.7 and σ = 2. (b) Effect of the
positive buoyancy ratio number on the streamlines and isotherms using Ra = 104, Re = 100, Le = 1, Pr = 0.7 and σ = 2.
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Fig. 7. Effect of buoyancy ratio number on the average Nusselt number (or Sher-
wood number) using Ra = 104, Re = 100, Le = N = 1, Pr = 0.7 and σ = 2.

the inner cylinder while the bottom region of the annulus show
low transport activities.

Next, the average Nusselt number predictions over the cir-
cumference of the inner cylinder are presented for the above-
mentioned dimensionless variables as shown in Fig. 7. The
average Nusselt number predictions for the considered range
of buoyancy ratio numbers are found to converge at N = −1,
which represents the domination of the heat conduction regime.
The results show higher Nusselt number predictions for the pos-
itive N value as compared to that for the negative N value. As
can seen in Fig. 7, the Nusselt number predictions are lower in
the opposing flow region than for the corresponding N value in
the aiding flow range due to the combined effect of the buoy-
ancy forces. Moreover, higher Nusselt number predictions are
achieved with higher absolute values of N as, in this case, the
solutal buoyancy forces contribute to the overall diffusion rate
(dominant mass transfer regime).

The effect of Rayleigh number on the streamlines and
isotherms is presented in Fig. 8 for Le = N = 1, Re = 100 with
a gap width σ = 2. The Rayleigh number provides a measure
for the significance of the buoyancy force. At Ra = 103 (forced
convection dominant regime), a single cell appears in the region
of 0 < φ < π . At this stage, the flow is largely overwhelmed by
the rotational effect, which brings about thermal stratification of
the isotherms. Once Ra is elevated to 5×103, an additional cell
emerges and thermal plumes are observed above of the inner
cylinder. Apparently, the boost in Ra value increases the contri-
butions offered by the buoyancy forces, which intensifies flow
activities and, thus, results in higher heat transfer rates. This
can be depicted from the streamline Ψ values registered for
each Ra, which confirms such observation. It is also observed
that thinner thermal boundary layers tend to besiege much of
the inner cylinder as Ra is increased, which signals the change
in the mode of heat transfer from conduction to convection.
This is likely attributed to the suppression in the viscous forces
offered by the cells in the left region. Clearly, the cells in the left
region pull away from the right side with elevated Ra values.

The effect of the Prandtl number is shown in Fig. 9 for Le =
N = 1, Ra = 104, Re = 100 with a gap width σ = 2. Higher
values of Prandtl numbers indicate an increase in viscous diffu-

Fig. 8. Effect of Rayleigh number on the streamlines and isotherms for
Re = 100, Pr = 0.7, Le = N = 1 and σ = 2.

sion as compared to its thermal counterpart. This causes an in-
crease in the viscous drag and, consequently, suppresses the
cells formation as Pr is increased. Moreover, the streamlines
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Fig. 9. Effect of Prandtl number on the streamlines and isotherms for Ra = 104,
Re = 100, Le = N = 1 and σ = 2.

and isotherms become evenly distributed with the increase in
Pr value. The thermal plumes above the inner cylinder are tilted
in the same direction of rotation upon increasing Pr value. This
particular observation was also pointed out by Lee [21] for a
laminar mixed thermal convection in an annulus.

In all the above cases, the annulus gap width σ was fixed
at 2. Hence, it is important to explore the effect of the dimen-
sionless gap width σ as well, which is varied here between 0.5
(wide gap) and 5.0 (narrow gap) as seen in Fig. 10. When the

Fig. 10. Gap width effect on the streamlines and isotherms for Ra = 104,
Re = 100, Le = N = 1 and Pr = 0.7.

case of σ = 0.5 is considered, the gap provides an ample region
for the fluid to be carried away in the annulus. The flow and
thermal characteristics tend to be more convective. Moreover,
the same flow and temperature patterns persist in the annu-
lus once the gap width has increased. However, the patterns
become very much confined for σ = 5, which results in the con-
duction regime to be more pronounced. The conduction regime
is expected to dominate the transport processes for gap width
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Fig. 11. Effect of eccentricity on the streamlines and isotherms for Ra = 104,
Re = 100, Le = N = 1, Pr = 0.7 and σ = 2.

of σ � 5. The current numerical study is concluded by investi-
gating the effect of vertical eccentricity on the rate of transport
processes in the annulus as illustrated in Fig. 11. For ε = 0.75,
the viscous drag contains much of the lower region of the an-
nulus causing poor transport rate in the region of 0 < φ < π .

When the eccentricity is reduced to 0.5, the flow activities are
enhanced as denoted by the increase in the Ψ value. Thermal
plumes are observed when ε is set to zero, i.e., concentric cylin-
der case. The eccentricity literally confines the flow cell in the
direction of eccentricity, whereas more flow is allowed to ‘pass’
in the open area, which augments the heat transfer due to the
thermal convection mechanism. The viscous drag is contained
in the left region when the inner cylinder is displaced down-
wards. This allows the cells in the right region to penetrate to
the left region to the rotational effect. As a result, flow activi-
ties intensify and the thermal plumes above the inner cylinder
are enhanced and become titled in the direction of rotation.

5. Summary and conclusions

The current investigation is concerned with the numerical
simulation of double diffusive flow in a two-dimensional hori-
zontally mounted annulus with the outer cylinder rotating at a
prescribed constant speed in the anti-clockwise direction. The
solutal and thermal gradients were maintained by subjecting
the inner cylinder to a higher magnitude than the outer one.
In addition, the flow was considered laminar and under steady
state conditions. The Galerkin finite element method was used
to solve the set of the governing equations and the pertinent ini-
tial and boundary conditions while using a variable grid system.
The investigation was carried out for a broad spectrum of rele-
vant dimensionless groups to explore their effects on the overall
flow patterns and transport rates. The employed domains of
these dimensionless groups were as follows: 5 � Re � 150,
0.01 � Le � 10, 103 � Ra � 105, −15 � N � 15, 0.7 � Pr �
10, 0.5 � σ � 5 and −0.75 � ε � 0.75.

The results show that high rotational Reynolds numbers tend
to diffuse the thermal convection currents, which brings about
the formation of the concentric-shaped isotherms. Furthermore,
high Le values significantly improve the mass transfer rate,
whereas it has insignificant impact on the heat transfer rate.
Also, the increase in the absolute value of the buoyancy ratio
number N was found to enhance the estimated Nusselt num-
ber and the Sherwood number as well. Next, the incorporation
of high Prandtl number was found to stratify the isotherms,
which resembles the characteristics of diffusion mode for the
energy and solutal transport processes. Afterward, the effect of
the annulus gap width was examined, which was observed to
enhance the convective mode of the transport process upon in-
creasing the gap width. Finally, the convective mode of heat
transfer was augmented upon employing a negative eccentricity
value, i.e., moving the inner cylinder downwards. The results of
the present work may play an important role on enhancing the
performance of many engineering applications such as drying
technology and crystal growth based on a wide range of perti-
nent parameters studied in this work.
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